СТАТИИ | ARTICLES

Entries in category | Записи во категоријата : 41
Shown entries | Прикажани записи : 11-20
Pages | Страни: « 1 2 3 4 5 »


ТАНГЕНТНИ ЧЕТВОРОУГАО

ТАНГЕНТЕН ЧЕТИРИАГОЛНИК

        Četvorougao u koji može da se upiše kružnica, postoji kružnica koja dodiruje stranice četvorogla,stranice četvorougla su tangente jedne kružnice.

 
Views: 366 | Added by: admin | Date: 06.04.2020

TETIVNI ČETVEROKUTI 

ТЕТИВНИ ЧЕТИРИАГОЛНИЦИ

        Obitelj je četverokuta vrlo velika. Neke njezine članove kao što su kvadrat, pravokutnik i paralelogram već ste dobro upoznali. Ovdje ćemo opisat jednog manje poznatog pripadnika te obitelji: tetivni četverokut.

        Tetivni četverokut je četverokut oko kojeg se može opisati kružnica.

 
Views: 377 | Added by: admin | Date: 04.04.2020

Excentral Triangle

      The excentral triangle, also called the tritangent triangle, of a triangle DeltaABC is the triangle J=DeltaJ_AJ_BJ_C with vertices corresponding to the excenters of DeltaABC.

 

Views: 355 | Added by: admin | Date: 01.04.2020

Incircle of the arbelos

       
      Let C be a point on a segment AB. The region bounded by the three semicircles (on the same side of AB) with diameters AB, AC and CB is called an arbelos. Suppose the smaller semicircles have radii a and b respectively. Let D be the intersection of the largest semicircle with the perpendicular through C to AB. This perpendicular is an internal common tangent of the smaller semicircles.
 
Views: 285 | Added by: admin | Date: 31.03.2020

Inversion in a circle | Инверзија

        Take a fixed circle K in the plane, with center O and radius R. The inversion in K sends every point P (other than O) to the point P′ on the ray OP determined by the condition OP′ · OP = R2 . We call P′ the inversive image of P in K, or simply the inverse.
 
Views: 285 | Added by: admin | Date: 31.03.2020

Tucker Circles

      The Tucker circles are a generalization of the cosine circle and first Lemoine circle which can be viewed as a family of circles obtained by parallel displacing sides of the corresponding cosine or Lemoine hexagon.
 

 

Views: 234 | Added by: admin | Date: 30.03.2020

Taylor Circle

     From the feet H_A, H_B, and H_C of each altitude of a triangle DeltaABC, draw lines (H_AP_A,H_AQ_A), (H_BP_B,H_BQ_B), (H_CP_C,H_CQ_C) perpendicular to ...
 

 

Views: 260 | Added by: admin | Date: 30.03.2020

Stewart's Theorem

Views: 290 | Added by: admin | Date: 29.03.2020

Menelaus' Theorem

Views: 309 | Added by: admin | Date: 29.03.2020

Ceva's Theorem

 
    Given a triangle with polygon vertices A, B, and C and points along the sides ...
 

 

Views: 406 | Added by: admin | Date: 29.03.2020